A Combination Prediction Model of Long-Term Ionospheric foF2 Based on Entropy Weight Method

Author:

Bai Hongmei,Feng FengORCID,Wang JianORCID,Wu TaosuoORCID

Abstract

It is critically meaningful to accurately predict the ionospheric F2 layer critical frequency (foF2), which greatly limits the efficiency of communications, radar, and navigation systems. This paper introduced the entropy weight method to develop the combination prediction model (CPM) for long-term foF2 at Darwin (12.4° S, 131.5° E) in Australia. The weight coefficient of each individual model in the CPM is determined by using the entropy weight method after completing the simulation of the individual model in the calibration period. We analyzed two sets of data to validate the method used in this study: One set is from 2000 and 2009, which are included in the calibration period (1998–2016), and the other set is outside the calibration cycle (from 1997 and 2017). To examine the performance, the root mean square error (RMSE) of the observed monthly median foF2 value, the proposed CPM, the Union Radio Scientifique Internationale (URSI), and the International Radio Consultative Committee (CCIR) are compared. The yearly RMSE average values calculated from CPM were less than those calculated from URSI and CCIR in 1997, 2000, 2009, and 2017. In 2000 and 2009, the average percentage improvement between CPM and URSI is 9.01%, and the average percentage improvement between CPM and CCIR is 13.04%. Beyond the calibration period, the average percentage improvement between CPM and URSI is 13.2%, and the average percentage improvement between CPM and CCIR is 12.6%. The prediction results demonstrated that the proposed CPM has higher precision of prediction and stability than that of the URSI and CCIR, both within the calibration period and outside the calibration period.

Funder

National Natural Science Foundation of China

Tianjin Research Program of Application Foundation and Advanced Technology

National 973 Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference41 articles.

1. Simplified Regional Prediction Model of Long-Term Trend for Critical Frequency of Ionospheric F2 Region over East Asia

2. Modeling of the ionospheric critical frequency of the F2 layer over Asia based on modified temporal-spatial reconstruction;Wang;Radio Sci.,2019

3. A comparison of neural network-based predictions of foF2 with the IRI-2012 model at conjugate points in Southeast Asia

4. A Prediction Model of Ionospheric f o F 2 Based on Extreme Learning Machine

5. Twenty-four hour predictions of foF2 using time delay neural networks;Wintoft;Radio Sci.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3