Simplified Regional Prediction Model of Long-Term Trend for Critical Frequency of Ionospheric F2 Region over East Asia

Author:

Wang JianORCID,Bai Hongmei,Huang XiangdongORCID,Cao Yuebin,Chen Qiang,Ma Jianguo

Abstract

To improve the accuracy of predictions and simplify the difficulty with the algorithm, a simplified empirical model is proposed in developing a long-term predictive approach in determining the ionosphere’s F2-layer critical frequency (foF2). The main distinctive features introduced in this model are: (1) Its vertical incidence sounding data, which were obtained from 18 ionosonde stations in east Asia between 1949 and 2017, used in reconstructing the model and verification; (2) the use of second-order polynomial and triangle harmonic functions, instead of linear ones, to obtain the relationship between the seasonal vs. solar-cycle variations of foF2 and solar activity parameters; (3) the flux of solar radio waves at 10.7 cm and sunspot number are together introduced in reconstructing the temporal characteristics of foF2; and (4) the use of the geomagnetic dip coordinates rather than geographic coordinates in reconstructing the spatial characteristics of foF2. The statistical results reveal that foF2 values calculated from the proposed model agree well with the trend in the monthly median statistical characteristics obtained from measurements. The results are better than those obtained from the International Reference Ionosphere model using both the CCIR and URSI coefficients. Furthermore, the proposed model has enabled some useful guidelines to be established for a more complete and accurate Asia regional or global model in the future.

Funder

National Natural Science Foundation of China

National 973 Program of China

Qingdao National Laboratory for Marine Science and Technology of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3