A Comparison of Four Methods for Automatic Delineation of Tree Stands from Grids of LiDAR Metrics

Author:

Sun Yusen,Jin Xingji,Pukkala TimoORCID,Li FengriORCID

Abstract

Increased use of laser scanning in forest inventories is leading to the adoption and development of automated stand delineation methods. The most common categories of these methods are region merging and region growing. However, recent literature proposes alternative methods that are based on the ideas of cellular automata, self-organizing maps, and combinatorial optimization. The studies where these methods have been described suggest that the new methods are potential options for the automated segmentation of a forest into homogeneous stands. However, no studies are available that compare the new methods to each other and to the traditional region-merging and region-growing algorithms. This study provided a detailed comparison of four methods using LiDAR metrics calculated for grids of 5 m by 5 m raster cells as the data. The tested segmentation methods were region growing (RG), cellular automaton (CA), self-organizing map (SOM), and simulated annealing (SA), which is a heuristic algorithm developed for combinatorial optimization. The case study area was located in the Heilongjiang province of northeast China. The LiDAR data were collected from an unmanned aerial vehicle for three 1500-ha test areas. The proportion of variation in the LiDAR metrics that was explained by the segmentation was mostly the best for the SA method. The RG method produced more heterogeneous segments than the other methods. The CA method resulted in the smallest number of segments and the largest average segment area. The proportion of small segments (smaller than 0.3 ha) was the highest in the RG method while the SA method always produced the fewest small stands. The shapes of the segments were the best (most circular) for the CA and SA methods, but the shape metrics were good for all methods. The results of the study suggest that CA, SOM, and SA may all outperform RG in automated stand delineation.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3