Improved Cellular Automaton for Stand Delineation

Author:

Jia Weiwei,Sun Yusen,Pukkala TimoORCID,Jin Xingji

Abstract

Airborne laser scanning (ALS) is becoming common in forest inventories. The data obtained by laser scanning contain the locations of the echoes of laser pulses. If these data are used in forest management, they need to be segmented into spatially continuous stands that are homogeneous in terms of stand attributes. Prior to segmentation, the laser pulse data can be processed into canopy height model, which shows the distance of canopy surface from the ground. This study used a cellular automaton with a canopy height model for the delineation of tree stands, considering three criteria: homogeneity of the stand in terms of growing stock attributes, stand area, and stand shape. A new method to consider stand shape in cellular automaton was presented. This method had a clear beneficial effect on the stand delineation result. Increasing weight of the shape criterion led to more roundish and less irregular stand shapes. Also, increasing weight of the stand area improved the shape of the stands. The cellular automaton led to average stand areas of 1–1.7 ha, depending on cell size and the parameters of the automaton. The cellular automaton explained 84.7–94.2% of the variation in maximum canopy height when 5 m × 5 m cells were used. Cell sizes of 5–10 m were found to result in the best stand delineation results.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3