Nanomaterials’ Influence on the Performance of Thermal Insulating Mortars—A Statistical Analysis

Author:

Pedroso MarcoORCID,Flores-Colen InêsORCID,Silvestre José DinisORCID,Gomes Maria da GlóriaORCID

Abstract

This research provides a statistical analysis of the mechanical and physical properties of thermal insulating mortars developed in the laboratory and by the industry with and without the incorporation of nanomaterials. This was evaluated by carrying out a uni and bivariate analysis, principal components and factor analysis, cluster analysis, and the application of regression models. The results show that it is possible to find associations between these mortars’ properties, but also how these formulations’ development can be approached in the future to achieve better overall performance. They also show that the use of nanomaterials, namely silica aerogel, significantly improved the mortars’ thermal insulation capabilities, allowing us to obtain mortar formulations with thermal conductivities below the values presented by classic thermal insulating materials. Therefore, with this investigation, other researchers can support their product-development choices when incorporating nanomaterials to reduce mortars’ thermal conductivities, increasing their production efficiency, overall multifunctionality, and sustainability.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference116 articles.

1. Energy Performance of EU Buildingshttps://ec.europa.eu/energy/en/topics/energy-efficiency/energy-performance-of-buildings

2. A review of performance of zero energy buildings and energy efficiency solutions

3. Characterization of walls with eco-efficient acoustic insulation materials (traditional and innovative)

4. High Performance Insulation Based on Nanostructure Encapsulation of Airhttp://www.hipin.eu/

5. Energy in buildings—Policy, materials and solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3