Guidelines for Impact Echo Test Signal Interpretation Based on Wavelet Packet Transform for the Detection of Pile Defects

Author:

Kim Hyeong-JooORCID,Mission Jose LeoORCID,Dinoy Peter ReyORCID,Kim Hyeong-Soo,Park Tae-Woong

Abstract

Nonlinear amplification is typically done on velocity signals from low-strain pile integrity tests to enhance weak echoes and superimpose any peak reflections. This conventional method may sometimes fail to untangle the hidden information within the signal that is obscured by the presence of noise. In this study, a pile defect identification system based on the conventional nonlinear amplification method and the wavelet packet transform (WPT) was proposed to easily detect the presence of any geometric or material defects by identifying feature parameters. Diagnostic rules, which have been lacking in the literature, were presented to serve as a guide in interpreting decomposed signals and in analyzing various characteristics of peak waveforms that are associated with certain types of defects. In this study, the finite element method was used to simulate the impact echo test of nine cases of defective piles. To verify the proposed scheme, six data sets of the nine cases of defective piles were made, in which a total of 54 piles were analyzed. The results of the study showed that the identification method based on WPT could detect defects 87.04% of the time compared to the conventional method, which only detected defects 64.81% of the time.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Drilled-shaft integrity by wave propagation method;Hearne;J. Geotech. Eng. Div.,1981

2. Evaluation of the Base Condition of Drilled Shafts by the Impact-Echo Method;Kim;Geotech. Test. J.,2004

3. Determination of pile damage by top measurements;Rausche,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3