Abstract
Nonlinear amplification is typically done on velocity signals from low-strain pile integrity tests to enhance weak echoes and superimpose any peak reflections. This conventional method may sometimes fail to untangle the hidden information within the signal that is obscured by the presence of noise. In this study, a pile defect identification system based on the conventional nonlinear amplification method and the wavelet packet transform (WPT) was proposed to easily detect the presence of any geometric or material defects by identifying feature parameters. Diagnostic rules, which have been lacking in the literature, were presented to serve as a guide in interpreting decomposed signals and in analyzing various characteristics of peak waveforms that are associated with certain types of defects. In this study, the finite element method was used to simulate the impact echo test of nine cases of defective piles. To verify the proposed scheme, six data sets of the nine cases of defective piles were made, in which a total of 54 piles were analyzed. The results of the study showed that the identification method based on WPT could detect defects 87.04% of the time compared to the conventional method, which only detected defects 64.81% of the time.
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference35 articles.
1. Drilled-shaft integrity by wave propagation method;Hearne;J. Geotech. Eng. Div.,1981
2. Evaluation of the Base Condition of Drilled Shafts by the Impact-Echo Method;Kim;Geotech. Test. J.,2004
3. Determination of pile damage by top measurements;Rausche,1979
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献