Non-Destructive Evaluation of Material Stiffness beneath Pile Foundations Tip Using Harmonic Wavelet Transform

Author:

Oh Hyun-Ju1,Park Jung-Hoon2,Park Hyung-Choon1

Affiliation:

1. Department of Civil Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

2. Korea Railroad, Daejeon 34618, Republic of Korea

Abstract

Pile foundations are used to support superstructures and play an important role in the safety of these structures. The performance of pile foundations generally depends on the conditions of the pile itself and the material under the pile tip(i.e., bottom), especially for end-bearing piles installed in soft soil volumes. Therefore, to assess the performance of existing pile foundations, it is crucial not only to evaluate the structural integrity of the pile itself, but also to assess the ground conditions, such as subsoil stiffness beneath the pile foundation tip. Accessing the subsoil beneath the pile foundation tip is highly challenging in the field. Hence, there is a need for the development of non-destructive pile evaluation methods that allow the assessment of subsoil stiffness beneath the pile tip without direct access to the subsoil. Various non-destructive methods have been developed for pile performance assessment. However, these conventional non-destructive methods are primarily designed for assessing the structural integrity of the pile itself, and there are no existing non-destructive pile integrity testing methods applicable to evaluate the subsoil stiffness beneath the pile tip. In this study, a non-destructive method is developed to evaluate the subsurface soil stiffness beneath pile tip without direct access. The proposed method involves applying impact loading to the easily accessible pile head and measuring the elastic waves propagated within the pile foundation due to the impact loading. These wave signals are then recorded at the pile head. The measured time–history signals are decomposed using harmonic wavelet transform. This allows the obtainment of well-defined magnitude and phase information over time for various individual frequency components composing the wave. In this study, a method is proposed to assess the stiffness of the subsoil beneath the pile tip by simultaneously utilizing the magnitude and phase information of the measured signals obtained through harmonic wavelet transform. To facilitate this, a step-by-step data analysis procedure for evaluating the subsoil stiffness beneath the pile tip is introduced. To validate the proposed method, numerical simulations were conducted using ABAQUS. The experimental data obtained from the numerical simulations were processed using the proposed method to assess the subsoil stiffness beneath the pile. The determined subsoil stiffness was then compared with the exact soil stiffness used in the numerical simulation to evaluate the validity of the proposed method. Through this analysis, the proposed method demonstrated its effectiveness in assessing the subsoil stiffness beneath piles tip installed in weak soil volume.

Funder

Chungnam National University

Publisher

MDPI AG

Reference44 articles.

1. Das, B.M. (2010). Principles of Foundation Engineering, Cengage Learning India. [7th ed.].

2. Rausche, F., Likins, G., and Kung, S.R. (2022). Application of Stress-Wave Theory to Piles, Routledge.

3. Reliability evaluation of cross-hole sonic logging for bored pile integrity;Li;J. Geotech. Geoenviron. Eng.,2005

4. Concrete Pile Defect Identification: Insights from Cross-Hole Sonic Logging and High Strain Dynamic Pile Test;Ly;IOP Conf. Ser. Earth Environ. Sci.,2022

5. A study on the application of the parallel seismic method in pile testing;Lu;Soil Dyn. Earthq. Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3