A Deep Regression Model with Low-Dimensional Feature Extraction for Multi-Parameter Manufacturing Quality Prediction

Author:

Deng Jun,Bai Yun,Li Chuan

Abstract

Manufacturing quality prediction can be used to design better parameters at an earlier production stage. However, in complex manufacturing processes, prediction performance is affected by multi-parameter inputs. To address this issue, a deep regression framework based on manifold learning (MDRN) is proposed in this paper. The multi-parameter inputs (i.e., high-dimensional information) were firstly analyzed using manifold learning (ML), which is an effective nonlinear technique for low-dimensional feature extraction that can enhance the representation of multi-parameter inputs and reduce calculation burdens. The features obtained through the ML were then learned by a deep learning architecture (DL). It can learn sufficient features of the pattern between manufacturing quality and the low-dimensional information in an unsupervised framework, which has been proven to be effective in many fields. Finally, the learned features were inputted into the regression network, and manufacturing quality predictions were made. One type (two cases) of machinery parts manufacturing system was investigated in order to estimate the performance of the proposed MDRN with three comparisons. The experiments showed that the MDRN overwhelmed all the peer methods in terms of mean absolute percentage error, root-mean-square error, and threshold statistics. Based on these results, we conclude that integrating the ML technique for dimension reduction and the DL technique for feature extraction can improve multi-parameter manufacturing quality predictions.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3