Deep Regression Neural Networks for Proportion Judgment

Author:

Milicevic MarioORCID,Batos Vedran,Lipovac AdrianaORCID,Car Zeljka

Abstract

Deep regression models are widely employed to solve computer vision tasks, such as human age or pose estimation, crowd counting, object detection, etc. Another possible area of application, which to our knowledge has not been systematically explored so far, is proportion judgment. As a prerequisite for successful decision making, individuals often have to use proportion judgment strategies, with which they estimate the magnitude of one stimulus relative to another (larger) stimulus. This makes this estimation problem interesting for the application of machine learning techniques. In regard to this, we proposed various deep regression architectures, which we tested on three original datasets of very different origin and composition. This is a novel approach, as the assumption is that the model can learn the concept of proportion without explicitly counting individual objects. With comprehensive experiments, we have demonstrated the effectiveness of the proposed models which can predict proportions on real-life datasets more reliably than human experts, considering the coefficient of determination (>0.95) and the amount of errors (MAE < 2, RMSE < 3). If there is no significant number of errors in determining the ground truth, with an appropriate size of the learning dataset, an additional reduction of MAE to 0.14 can be achieved. The used datasets will be publicly available to serve as reference data sources in similar projects.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3