Affiliation:
1. Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Abstract
Automatic classification of arteries and veins (A/V) in fundus images has gained considerable attention from researchers due to its potential to detect vascular abnormalities and facilitate the diagnosis of some systemic diseases. However, the variability in vessel structures and the marginal distinction between arteries and veins poses challenges to accurate A/V classification. This paper proposes a novel Multi-task Segmentation and Classification Network (MSC-Net) that utilizes the vessel features extracted by a specific module to improve A/V classification and alleviate the aforementioned limitations. The proposed method introduces three modules to enhance the performance of A/V classification: a Multi-scale Vessel Extraction (MVE) module, which distinguishes between vessel pixels and background using semantics of vessels, a Multi-structure A/V Extraction (MAE) module that classifies arteries and veins by combining the original image with the vessel features produced by the MVE module, and a Multi-source Feature Integration (MFI) module that merges the outputs from the former two modules to obtain the final A/V classification results. Extensive empirical experiments verify the high performance of the proposed MSC-Net for retinal A/V classification over state-of-the-art methods on several public datasets.
Funder
Science and Technology Project of Beijing Municipal Commission of Education
National Natural Science Foundation of China
Scientific Research Foundation of Beijing University of Civil Engineering and Architecture
Fundamental Research Funds for Beijing University of Civil Engineering and Architecture
Public Computing Cloud Platform of Renmin University of China
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献