Pixel-Wise Classification of High-Resolution Ground-Based Urban Hyperspectral Images with Convolutional Neural Networks

Author:

Qamar FaridORCID,Dobler Gregory

Abstract

Using ground-based, remote hyperspectral images from 0.4–1.0 micron in ∼850 spectral channels—acquired with the Urban Observatory facility in New York City—we evaluate the use of one-dimensional Convolutional Neural Networks (CNNs) for pixel-level classification and segmentation of built and natural materials in urban environments. We find that a multi-class model trained on hand-labeled pixels containing Sky, Clouds, Vegetation, Water, Building facades, Windows, Roads, Cars, and Metal structures yields an accuracy of 90–97% for three different scenes. We assess the transferability of this model by training on one scene and testing to another with significantly different illumination conditions and/or different content. This results in a significant (∼45%) decrease in the model precision and recall as does training on all scenes at once and testing on the individual scenes. These results suggest that while CNNs are powerful tools for pixel-level classification of very high-resolution spectral data of urban environments, retraining between scenes may be necessary. Furthermore, we test the dependence of the model on several instrument- and data-specific parameters including reduced spectral resolution (down to 15 spectral channels) and number of available training instances. The results are strongly class-dependent; however, we find that the classification of natural materials is particularly robust, especially the Vegetation class with a precision and recall >94% for all scenes and model transfers and >90% with only a single training instance.

Funder

James S. McDonnell Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3