Simultaneous Optimization of Vehicle Arrival Time and Signal Timings within a Connected Vehicle Environment

Author:

Wu Wei,Huang Ling,Du Ronghua

Abstract

Most existing signal timing plans are optimized given vehicles’ arrival time (i.e., the time for the upcoming vehicles to arrive at the stop line) as exogenous input. In this paper, based on the connected vehicle (CV) technique, vehicles can be regarded as moving sensors, and their arrival time can be dynamically adjusted by speed guidance according to the current signal status and traffic conditions. Therefore, an integrated traffic control model is proposed in this study to optimize vehicle arrival time (or travel speed) and signal timing simultaneously. “Speed guidance model at a red light” and “speed guidance model at a green light” are presented to model the influences between travel speed and signal timing. Then, the methods to model the vehicle arrival time, vehicle delay, and number of stops are proposed. The total delay, which includes the control delay, queuing delay, and signal delay, is used as the objective of the proposed model. The decision variables consist of vehicle arrival time, starting time of green, and duration of green for each phase. The sliding time window is adopted to dynamically tackle the problems. Compared with the results optimized by the classical actuated signal control method and the fixed-time-based speed guidance model, the proposed model can significantly decrease travel delays as well as improve the flexibility and mobility of traffic control. The sensitivity analysis with the communication distance, the market penetration of connected vehicles, and the compliance rate of speed guidance further demonstrates the potential of the proposed model to be applied in various traffic conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3