Green Wave Arterial Cooperative Control Strategy Based on Through-Traffic Priority

Author:

Bao Riyong1ORCID,Huang Wei1,Lin Yi1,Lian Peikun1ORCID,Easa Said M.2,Chen Ning3

Affiliation:

1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

3. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

Mainline coordinated control is usually based on fixed speed and statistical traffic flow by period. However, in actual operation, the vehicles parked in front of the intersection and the arriving vehicles often fluctuate, and the through-traffic green time is wasted due to phase transition, which leads to mismatches between the signal plans and actual traffic flow requirements, affecting the traffic efficiency of the intersection. To address the above issues, using vehicle–road collaborative control (VRCC), by calculating the phase difference lead time and phase difference of adjacent intersections, the green extension time for the green wave through-traffic phase, and the guiding vehicle speed, the goal of reducing the detention volume of through traffic, reducing the waste of through-traffic green time caused by phase transitions and improving the throughput of through traffic can be achieved. The speed of the green wave traffic flow is increased by guiding vehicles to form saturated platoons during green periods. Finally, PTV VISSIM 4.3 was used for simulation verification, and the results showed that compared to not implementing the control strategy, the average delay on the arterial road was reduced by 85.1%, the average number of stops was reduced by 84.3%, the average travel time was reduced by 34%, and the average queue length was reduced by 62.6%. This significantly improved the efficiency of traffic on the arterial road and effectively reduced congestion.

Funder

Ning Chen

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3