The Dependence of the Strength of a Carbon Fiber/Aluminum Matrix Composite on the Interface Shear Strength between the Matrix and Fiber

Author:

Galyshev SergeiORCID,Atanov Bulat

Abstract

Taking the example of a composite wire with an Al-25% Sn alloy matrix reinforced with carbon fiber, the dependence of composite bending strength on interface shear strength was determined. Samples of the composite wire with different interface shear strengths were obtained by heat treatment at temperatures from 300 to 600 °C. The highest bending strength of 2450 MPa was observed for composite wire samples with the lowest interface shear strength. With an increase in the shear strength of the interface, a decrease in the strength was observed. The study of the surface of carbon fiber extracted from the composite showed that heat treatment led to the formation of aluminum carbide crystals on the fiber surface, the size and number of which increased with increasing temperature. As a result, there was an increase in the shear strength of the interface. The evaluation of the work of fracture of a composite with different strengths of the interface between the matrix and the fiber demonstrated that as the strength of the interface increases, the work of fracture decreases, due to the premature fracture of the composite through crack propagation in one plane. Based on the experimental data, the refined mixture rule according to the Weibull distribution, and an assessment of the critical stress of crack propagation according to the Griffith–Orowan–Irwin concept, the dependence of composite strength on the shear strength of the interface was estimated. Due to this, the critical shear strength was calculated at which the greatest strength of the composite can be achieved, these values being 107 MPa and 2675 MPa, respectively. It is shown that the contribution of the work of overcoming the friction force to the total work of fracture at relatively small values of shear strength can be several times greater than the total contribution of all other types of energy.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3