The Effect of Tin Content on the Strength of a Carbon Fiber/Al-Sn-Matrix Composite Wire

Author:

Galyshev SergeiORCID,Orlov ValeryORCID,Atanov Bulat,Kolyvanov Evgeniy,Averichev Oleg,Akopdzhanyan Tigran

Abstract

The effect of tin content in an Al-Sn alloy in the range from 0 to 100 at.% on its mechanical properties was studied. An increase in the tin content leads to a monotonic decrease in the microhardness and conditional yield stress of the Al-Sn alloy from 305 to 63 MPa and from 32 to 5 MPa, respectively. In addition, Young’s modulus and the shear modulus of the Al-Sn alloy decreases from 65 to 52 GPa and from 24 to 20 GPa, respectively. The effect of tin content in the Al-Sn matrix alloy in the range from 0 to 50 at.% on the strength of a carbon fiber/aluminum-tin-matrix (CF/Al-Sn) composite wire subject to three-point bending was also investigated. Increasing tin content up to 50 at.% leads to a linear increase in the composite wire strength from 1450 to 2365 MPa, which is due to an increase in the effective fiber strength from 65 to 89 at.%. The addition of tin up to 50 at.% to the matrix alloy leads to the formation of weak boundaries between the matrix and the fiber. An increase in the composite wire strength is accompanied by an increase in the average length of the fibers pulled out at the fracture surface. A qualitative model of the relationship between the above parameters is proposed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3