Abstract
In this study, quenching and tempering were employed to achieve the optimal match of strength and toughness of the high-strength low-alloy (HSLA) 15CrNi3MoV steel. The effect of the tempering temperature on the microstructure evolution and the carbides precipitation of the steel was also investigated using scanning electron microscopy (SEM), a X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The results showed that after tempering at different temperatures, the microstructure of 15CrNi3MoV steel was tempered martensite. During the tempering process, the M3C carbides precipitated on the ferrite matrix, the needle-like carbides accumulated and grew into a short rodlike shape or a granular shape with the increase of the tempering temperature. Subsequently, the strength and hardness of the steel showed a downward trend, and the elongation and the low temperature impact toughness showed an upward trend. The tensile strength and yield strength of the steel tempered at 650 °C decreased dramatically compared with the steel tempered at 550 °C, while the elongation increased rapidly. Considering the influence of the microstructure and the carbides and the demand for mechanical properties, the optimal tempering temperature is about 600 °C.
Funder
National Key Research and Development Program
National Science and Technology Major Project of China
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献