Study on Efficient Dephosphorization in Converter Based on Thermodynamic Calculation

Author:

Wang Zhong-Liang1ORCID,Song Tian-Le1,Zhao Li-Hua2,Bao Yan-Ping1

Affiliation:

1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Given the accelerating depletion of iron ore resources, there is growing concern within the steel industry regarding the availability of high-phosphorus iron ore. However, it is important to note that the utilization of high-phosphorus iron ore may result in elevated phosphorus content and notable fluctuations in molten iron, thereby imposing additional challenges on the dephosphorization process in steelmaking. The most urgent issue in the process of converter steelmaking is how to achieve efficient dephosphorization. In this study, the influence of various factors on the logarithm of the phosphorus balance distribution ratio (lgLp), the logarithm of the P2O5 activity coefficient (lgγP2O5), and the logarithm of the phosphorus capacity (lgCp) were examined through thermodynamic calculations. The impact of each factor on dephosphorization was analyzed, and the optimal conditions for the dephosphorization stage of the converter were determined. Furthermore, the influence of basicity and FetO content on the form of phosphorus in the slag was analyzed using FactSage 7.2 software, and the precipitation rules of the slag phases were explored. The thermodynamic calculation results indicated that increasing the basicity of the dephosphorization slag was beneficial for dephosphorization, but it should be maintained below 3. The best dephosphorization effect was achieved when the FetO content was around 20%. The reaction temperature during the dephosphorization stage should be kept low, as the dephosphorization efficiency decreased sharply with the increasing temperature. In dephosphorization slag, Ca3(PO4)2 usually formed a solid solution with Ca2SiO4, so the form of phosphorus in the slag was mainly determined by the precipitation form and content of Ca2SiO4. The phases in the dephosphorization slag mainly consisted of a phosphorus-rich phase, an iron-rich phase, and a matrix phase. The results of scanning electron microscopy and X-ray diffraction analyses were consistent with the thermodynamic calculation results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3