Pattern Formation by Spinodal Decomposition in Ternary Lead-Free Sn-Ag-Cu Solder Alloy

Author:

Sun Jia,Liang Huaxin,Sun Shaofu,Hu Juntao,Teng Chunyu,Zhao Lingyan,Bai Hailong

Abstract

In comparison to Pb-based solders which have a toxic effect, the tin-silver-copper (SAC) family of alloys have relatively strong reliability and are widely used in the electronics industry. Phase separation and coarsening phenomenon on the surface of 96.5 wt. % Sn-3.0 wt. % Ag-0.5 wt. % Cu (SAC305) solder products exhibit special microstructural features and offer opportunities for the microstructure control of microelectronic interconnects. However, the formation mechanism of such morphological patterns is still unknown. Here, we applied a combination of experimental and phase field methods to study how such patterns form. It was observed that the pattern was Sn-rich and exhibited the characteristic morphology of spinodal decomposition. Contrary to earlier findings that only binary systems like Sn-Pb and Sn-Bi experienced such phenomena, spinodal decomposition was firstly observed in ternary solder system Sn-Ag-Cu. Morphology of Sn-rich patterns depended on whether the spinodal decomposition reacted completely. SAC305 solder alloy was easily decomposed by Sn component after being heated to roughly 260 °C. The above conclusions could offer theoretical support for quantitatively controlling the microstructure of solder alloys and would enhance the quality of related products.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3