The Role of Microparticles of β-TCP and Wollastonite in the Creation of Biocoatings on Mg0.8Ca Alloy

Author:

Sedelnikova Mariya,Bakina Olga,Ugodchikova Anna,Tolkacheva TatianaORCID,Khimich MargaritaORCID,Uvarkin Pavel,Kashin Alexander,Miller Andrey,Egorkin VladimirORCID,Schmidt JuergenORCID,Sharkeev YuriiORCID

Abstract

The introduction of particles into the composition of coatings can significantly expand the range of properties and possibilities of the modified materials. In this work, the coatings containing microparticles of β-tricalcium phosphate (β-TCP) and wollastonite separately and in combination with each other were created on the surface of an Mg0.8Ca alloy. The morphology and microstructure of the coatings were examined by scanning and transmission electron microscopy. Their phase composition was determined with the help of X-ray diffraction analysis. The coating-to-substrate adhesion evaluation was carried out via the scratch-test method. Potentiodynamic polarization curves of the coatings were obtained during their immersion in 0.9% NaCl solution and their electrochemical properties were determined. Cytotoxic properties of the coatings were investigated by means of the MTT assay and flow cytometry in the course of the biological studies. In addition, NIH/3T3 cell morphology was analyzed using scanning electron microscopy. The structure, morphology, physical and mechanical, corrosive, and biological properties of the coatings depended on the type of particles they contained. Whereas the coating with β-TCP microparticles had higher adhesive properties, the coatings with wollastonite microparticles, as well as the combined coating, were less soluble and more biocompatible. In addition, the wollastonite-containing coating had the highest corrosion resistance.

Funder

Government research assignment for ISPMS SB RAS

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3