Experimental Study on Hydraulic Fracturing of High Asphalt Concrete Core Rock-Fill Dam

Author:

Wang Zhengxing,Hao Jutao,Yang Jian,Cao Yan,Li XiulinORCID,Liu Shijia

Abstract

In this paper, we experiment on the hydraulic fracturing of asphalt concrete with a voids content higher than 3%, which has arisen from the possible local shear dilatancy of Quxue asphalt’s core wall of concrete core dam, the highest one of the sort constructed in the world. The model test has shown that under the sole water pressure 0.13 MPa—relevant to the pressure where the dilatancy could appear at core wall of Quxue dam—the asphalt concrete with a voids content of 3.5% underwent hydraulic fracturing. Furthermore, the asphalt concrete with a voids content of 3.0% was tested for nearly 500 h and no sign of hydraulic fracturing was found, which again confirmed the threshold requirement for a 3% voids content to the impervious asphalt concrete to the hydraulic fracture concern. According to the analysis of the test result, the theory of fracture mechanics could be applied to the hydraulic fracture of asphalt concrete with a voids content between 3.4~4.0%, which behaved during hydraulic fracturing like a quasi-brittle material, similar to concrete. Because the hydraulic fracturing could occur in the shear dilatant asphalt concrete, a proper mix proportion of asphalt concrete to a project with adverse stress state should be carefully designed to rule out the possibility of shear dilatancy.

Funder

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin

China Institute of Water resource and Hydropower Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Developing of a SBS polymer modified bitumen to avoid low temperature cracks in the asphalt facing of a reservoir in a harsh climate region

2. An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production;Gandossi,2013

3. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

4. Hydraulic Fracturing in Core of Earth and Rock-fill Dams;Khanna;Int. J. Eng. Innov. Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3