Author:
Mi Chengji,Li Wentai,Xiao Xuewen,Liu Jinhua,Ming Xingzu
Abstract
A large number of sample data is needed to ascertain the characteristic parameters of traditional membership function, so that the calculated fuzzy fatigue reliability based on this method has certain errors for engineering structures without enough samples. A fuzzy fatigue reliability analysis method based on self-configuring membership function is proposed, while considering its multi-source uncertainties in the design, manufacture, and use stage in order to accurately evaluate fatigue reliability of welded A-type frame. In this paper, a novel membership function was presented on account of a small amount of sample data, which some experimental results verified. The mathematical expression for failure probability was deduced from the suggested model, as well as fatigue reliability. Subsequently, the thickness of steel plate defined in design stage, the material properties of weld metal that is produced in manufacture stage, and the loads at different connection sites determined in use stage were all considered as the random variables, which were obtained from Latin hypercube sampling, and the fatigue limit of weld metal was deemed as the fuzzy variable. Based on the response surface method, the fuzzy fatigue reliability performance function was constructed to assess failure probability of welded A-type frame under the condition of downhill and turning braking with full load, while its fatigue reliability was found to be far less than 90%. The fuzzy fatigue reliability optimization that was based on genetic algorithm was implemented, which showed that its reliability varied from 69.47% to 95.12%.
Funder
Hunan Provincial Science and Technology Department
Postdoctoral Research Foundation of China
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body
Education Department of Hunan Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献