Retrieving Performances of Vortex Beams with GS Algorithm after Transmitting in Different Types of Turbulences

Author:

Dedo Maxime IreneORCID,Wang Zikun,Guo KaiORCID,Sun Yongxuan,Shen Fei,Zhou Hongping,Gao Jun,Sun RuiORCID,Ding Zhizhong,Guo ZhongyiORCID

Abstract

The transmission of the orbital angular momentum (OAM) beam has attracted a lot of attention in the field of free-space optical (FSO) communication. Usually, after transmitting in atmospheric turbulences, the helical phase-front of OAM beams will be severely distorted, and there will exist the intermode crosstalk. As a result, the performance of the communication system will degrade significantly. In this paper, we have investigated the influences of the level of the turbulence strength to the transmitting OAM beams by changing the refractive-index structural parameter of C n 2 and the number of turbulence random phase screens of N in simulation environment. Then, by adopting the Gerchberg-Saxton (GS) algorithm, which can be used to compute the pre-compensation phase and correct the distorted OAM beams, the retrieving performances of transmitting single and multiplexed OAM beams under different turbulence strengths were also investigated. The simulation results show that with increasing the atmospheric-turbulence strength levels determined by the parameters C n 2 and N, the retrieving performances decrease dramatically. When the turbulence strength level is selected within an appropriate range, the OAM beams can be effectively retrieved by adopting GS algorithm and observing the power density spectrum. Notably, the retrieving performance for the transmission of a single OAM beam is better than that of the multiplexing OAM beam.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3