A Classical Molecular Dynamics Study of the Effect of the Atomic Force Microscope Tip Shape, Size and Deformation on the Tribological Properties of the Graphene/Au(111) Interface

Author:

Maden Cem1ORCID,Ustunel Hande2ORCID,Toffoli Daniele34ORCID

Affiliation:

1. Micro and Nanotechnology Programme, Middle East Technical University, 06800 Ankara, Turkey

2. Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

3. Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy

4. Istituto Officina dei Materiali (IOM)-CNR, S.S.14, km 163.5, 34149 Trieste, Italy

Abstract

Atomic force microscopes are used, besides their principal function as surface imaging tools, in the surface manipulation and measurement of interfacial properties. In particular, they can be modified to measure lateral friction forces that occur during the sliding of the tip against the underlying substrate. However, the shape, size, and deformation of the tips profoundly affect the measurements in a manner that is difficult to predict. In this work, we investigate the contribution of these effect to the magnitude of the lateral forces during sliding. The surface substrate is chosen to be a few-layer AB-stacked graphene surface, whereas the tip is initially constructed from face-centered cubic gold. In order to separate the effect of deformation from the shape, the rigid tips of three different shapes were considered first, namely, a cone, a pyramid and a hemisphere. The shape was seen to dictate all aspects of the interface during sliding, from temperature dependence to stick–slip behavior. Deformation was investigated next by comparing a rigid hemispherical tip to one of an identical shape and size but with all but the top three layers of atoms being free to move. The deformation, as also verified by an indentation analysis, occurs by means of the lower layers collapsing on the upper ones, thereby increasing the contact area. This collapse mitigates the friction force and decreases it with respect to the rigid tip for the same vertical distance. Finally, the size effect is studied by means of calculating the friction forces for a much larger hemispherical tip whose atoms are free to move. In this case, the deformation is found to be much smaller, but the stick–slip behavior is much more clearly seen.

Funder

TUBITAK, The Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3