In-Situ Epoxidation of Waste Cooking Oil and Its Methyl Esters for Lubricant Applications: Characterization and Rheology

Author:

Paul Atanu KumarORCID,Borugadda Venu BabuORCID,Goud Vaibhav V.ORCID

Abstract

In the present investigation, in-situ epoxidation of waste cooking oil and its methyl esters was prepared, and the rheological behavior was analyzed for biolubricant applications. Rheological properties of the prepared epoxides were measured at a temperature of 25–100 °C, at a shear rate ranging from 5 to 300 s−1. As viscosity is one of the critical parameters for potential biolubricant applications, in the present study, the power-law model was used to investigate the flow behavior of the epoxides. The viscosity of epoxidized waste cooking oil and its methyl ester epoxides showed Newtonian flow behavior in the studied temperature range. Different shear rates (5–100, 5–300, 100–300 s−1) were studied to determine the shear rate dependency of the epoxidized waste cooking oil and its methyl ester epoxides at different temperatures. From the average viscosity values, it was shown that the epoxides show identical results at all shear rates. The dynamic viscosities of the epoxidized waste cooking oil and its methyl ester epoxides were found to be dependent on fatty acid chain length, unsaturation, and temperature. Detailed physicochemical characterization for epoxide waste cooking oil (EWCO) and epoxide waste cooking oil methyl esters (EWCOME) were carried out to evaluate the properties for suitable biolubricant applications using standard American Society for Testing and Materials (ASTM) and American Oil Chemists’ Society (AOCS) methods. Based on the viscosity for EWCO (278.9 mm2/s) and EWCOME (12.15 mm2/s) and viscosity index for EWCO (164.94) and EWCOME (151.97) of the prepared epoxides, they could complement the standard ISO vegetable grade (VG) lubricants in the market.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3