Significance of Temperature-Dependent Density on Dissipative and Reactive Flows of Nanofluid along Magnetically Driven Sheet and Applications in Machining and Lubrications

Author:

Ullah Zia1ORCID,Hussain Ahmad2ORCID,Aldhabani Musaad S.3,Altaweel Nifeen H.3,Shahab Sana4ORCID

Affiliation:

1. Department of Mathematics and Statistics, The University of Lahore, Sargodha-Campus, Sargodha 40100, Pakistan

2. Department of Physics, The University of Lahore, Sargodha 40100, Pakistan

3. Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia

4. Department of Business Administration, College of Business Administration, Princess Nourah bint Adulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Nanofluid lubrication and machining are challenging and significant tasks in manufacturing industries that are used to control the removal of a material from a surface by using a cutting tool. The introduction of a nanofluid to the cutting zone provides cooling, lubricating, and chip-cleaning benefits that improve machining productivity. A nanofluid is a cutting fluid that is able to remove excessive friction and heat generation. Chemical reactions and temperature-dependent density are essential in the thermal behavior of a nanofluid. The present study presents a careful inspection of the chemical reactions, temperature-dependent density, viscous dissipation, and thermophoresis during the heat and mass transfer of a nanofluid along a magnetically driven sheet. The physical attitude of viscous dissipation and the chemical reaction improvement rate in magneto-nanofluid flow is the primary focus of the present research. By applying the proper transformation, nonlinear partial differential expressions are introduced to the structure of the ordinary differential framework. The flow equations are simplified into nonlinear differential equations, and these equations are then computationally resolved via an efficient computational technique known as the Keller box technique. Flow factors like the Eckert number, reaction rate, density parameter, magnetic force parameter, thermophoretic number, buoyancy number, and Prandtl parameter governing the velocity, temperature distribution, and concentration distribution are evaluated prominently via tables and graphs. The novelty of the current study is in computing a heat transfer assessment of the magneto-nanofluid flow with chemical reactions and temperature-dependent density to remove excessive friction and heating in cutting zones. Nanofluids play significant roles in minimum quantity lubrication (MQL), enhanced oil recovery (EOR), drilling, brake oil, engine oil, water-miscible cutting fluids, cryogenic cutting fluids, controlled friction between tools and chips and tools and work, and conventional flood cooling during machining processes.

Funder

Princess Nourah bint Abdulrahman University

University of Lahore

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3