Heat and Mass Transformation of Casson Hybrid Nanofluid (MoS2 + ZnO) Based on Engine Oil over a Stretched Wall with Chemical Reaction and Thermo-Diffusion Effect

Author:

Madiwal Shreedevi1,Naduvinamani Neminath B.1ORCID

Affiliation:

1. Department of Mathematics, Gulbarga University, Kalaburagi 585106, India

Abstract

This study investigates the potential of a hybrid nanofluid composed of MoS2 and ZnO nanoparticles dispersed in engine oil, aiming to enhance the properties of a lubricant’s chemical reaction with the Soret effect on a stretching sheet under the influence of an applied magnetic field. With the growing demand for efficient lubrication systems in various industrial applications, including automotive engines, the development of novel nanofluid-based lubricants presents a promising avenue for improving engine performance and longevity. However, the synergistic effects of hybrid nanoparticles in engine oil remain relatively unexplored. The present research addresses this gap by examining the thermal conductivity, viscosity, and wear resistance of the hybrid nanofluid, shedding light on its potential as an advanced lubrication solution. Overall, the objectives of studying the hybrid nanolubricant MoS2 + ZnO with engine oil aim to advance the development of more efficient and durable lubrication solutions for automotive engines, contributing to improved reliability, fuel efficiency, and environmental sustainability. In the present study, the heat and mass transformation of a Casson hybrid nanofluid (MoS2 + ZnO) based on engine oil over a stretched wall with chemical reaction and thermo-diffusion effect is analyzed. The governing nonlinear partial differential equations are simplified as ordinary differential equations (ODEs) by utilizing the relevant similarity variables. The MATLAB Bvp4c technique is used to solve the obtained linear ODE equations. The results are presented through graphs and tables for various parameters, namely, M, Q, β, Pr, Ec, Sc, Sr, Kp, Kr, and ϕ2* (hybrid nanolubricant parameters) and various state variables. A comparative survey of all the graphs is presented for the nanofluid (MoS2/engine oil) and the hybrid nanofluid (MoS2 + ZnO/engine oil). The results reveal that the velocity profile diminished against the values of M, Kp, and β, and the temperature profile rises with Ec and Q, whereas Pr decreases. The concentration profile is incremented (decremented) with the value of Sr (Sc and Kr). A comparison of the nanofluid and hybrid nanofluid suggests that the velocity f′ (η) becomes slower with the augmentation of ϕ2* whereas the temperature increases when ϕ2* = 0.6 become slower.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3