An Evaluation of the Tribological Characteristics of Diaphragm Plates for High-Pressure Hydrogen Gas Compressor Applications

Author:

Lee Sung-Jun1,Sohn Yoonchul2ORCID,Segu Dawit Zenebe1,Kim Chang-Lae1ORCID

Affiliation:

1. Department of Mechanical Engineering, Chosun University, Gwangju 61452, Republic of Korea

2. Department of Welding and Joining Science Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

Diaphragm plates, a key part of high-pressure hydrogen gas compressors, are easily cracked or broken due to repeated shape deformations caused by pressure, resulting in increasing difficulties in maintenance. This study aimed to improve the durability of diaphragm plates. This investigation focuses on the potential for friction and wear reduction through the application of surface polishing and Teflon coating on two diaphragm plate materials, namely stainless steel 301 and Inconel 718. To achieve this, various metal substrates with diverse surface morphologies were prepared and subjected to comprehensive assessments of their surface, mechanical, and tribological properties. Research findings revealed that the surface hardness and tensile strength of stainless steel 301 surpassed those of Inconel 718. Through friction and wear analysis, it was observed that Teflon-coated diaphragm plate material with a microstructure demonstrated superior friction performance. Furthermore, finite element analysis was employed to investigate the stress behavior of stainless steel 301 under different applied loads and conditions, offering valuable insights into the diaphragm’s performance. From the results of this study, the excellence of the Teflon coating applied to the surface of stainless steel 301—the material of the hydrogen compressor diaphragm plate—was confirmed.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3