Threshold investigation of shell thickness for enhanced mechanical and tribological performance in 3D-printed curved sandwich structures

Author:

Dobos József,Hanon Muammel M.ORCID,Keresztes Róbert Zsolt,Oldal IstvánORCID

Abstract

AbstractGlobal prominence has been attained by additive manufacturing technology in recent years, driven by its environmental benefits and machining advantages when compared to traditional subtractive methods. Fused deposition modeling (FDM) technology, primarily utilized in polymer and polymer composite 3D printing, allows for precise control of material distribution within components. In this study, mechanical and tribological behaviors of 3D-printed structures are investigated, yielding valuable insights applicable to practical scenarios. The study identifies threshold limits for layer thickness ratios in three-layered curved sandwich structures, which directly impact their specific load capacity. Stress distribution within 3D-printed PLA discs can be accurately predicted by a saturation function dependent on shell thickness, with material-specific constants. Beyond a critical shell thickness, the impact of increased shell thickness on local tribological properties is found to be negligible. These findings generalize effectively to structures characterized by robust outer shells and weaker inner infills. Connections are drawn between tribological behavior and contact mechanical properties, opening avenues for future research involving nonlinear material modeling and advanced simulations. This study contributes to a deeper understanding of 3D printing and polymer tribology while highlighting the transformative potential of additive manufacturing in various industries, offering cost-effective and resource-efficient solutions for optimized mechanical performance.

Funder

Hungarian University of Agriculture and Life Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3