Significance of Slippage and Electric Field in Mucociliary Transport of Biomagnetic Fluid

Author:

Munawar Sufian

Abstract

Shear stress at the cilia wall is considered as an imperative factor that affects the efficiency of cilia beatings as it describes the momentum transfer between the fluid and the cilia. We consider a visco-inelastic Prandtl fluid in a ciliated channel under electro-osmotic pumping and the slippage effect at cilia surface. Cilia beating is responsible for the stimulation of the flow in the channel. Evenly distributed cilia tend to move in a coordinated rhythm to mobilize propulsive metachronal waves along the channel surface by achieving elliptic trajectory movements in the flow direction. After using lubrication approximations, the governing equations are solved by the perturbation method. The pressure rise per metachronal wavelength is obtained by numerically integrating the expression. The effects of the physical parameters of interest on various flow quantities, such as velocity, pressure gradient, pressure rise, stream function, and shear stress at the ciliated wall, are discussed through graphs. The analysis reveals that the axial velocity is enhanced by escalating the Helmholtz–Smoluchowski velocity and the electro-osmosis effects near the elastic wall. The shear stress at the ciliated boundary elevates with an increase in the cilia length and the eccentricity of the cilia structure.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3