Author:
Munawar Sufian,Saleem Najma,Afzal Farkhanda,Mehmood Arif,Awan Malik Khurram Shahzad,Kumam Poom
Abstract
AbstractAn incredible eradication of thermal indulgence is required to enhance the flow and heat transfer enhancement in micro/nanofluidic devices. In addition, the rapid transport and instantaneous mixing of colloidal suspensions of metallic particles at nanoscale are exceptionally crucial at ascendency of inertial and surface forces. To address these challenges, the present work is intended to investigate the role of trimetallic nanofluid comprising of three kinds of nano-sized granules (titanium oxide, Silica and Aluminium dioxide) with pure blood through a heated micropump in the presence of inclined magnetic field and axially implemented electric field. To ensure rapid mixing in unidirectional flow, the pump internal surface is lined-up with mimetic motile cilia with slip boundary. The embedded cilia whip in pattern due to dynein molecular motion controlled by time and produce a set of metachronal waves along the pump wall. The shooting technique is executed to compute the numerical solution. In a comparative glance it is revealed that the trimetallic nanofluid exhibits 10% higher heat transfer efficiency as compared to bi-hybrid and mono nanofluids. Moreover, the involvement of electroosmosis results in almost 17% decrease in the heat transfer rate if it values jumps from 1 to 5. The fluid temperature in case of trimetallic nanofluid is higher and thus keeps the heat transfer entropy and the total entropy lower. Furthermore, involvement of thermal radiated and momentum slip significantly contribute in reducing heat losses.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Hunter, R. J. Foundation of Colloid Science (Oxford University Press, 2001).
2. Mallick, B. & Misra, J. C. Peristaltic flow of Eyring–Powell nanofluid under the action of an electromagnetic field. Eng. Sci. Technol. 22, 266–281 (2019).
3. Prakash, J. & Tripathi, D. Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis. J. Mol. Liq. 256, 352–371 (2018).
4. Saleem, N., Munawar, S. & Tripathi, D. Thermal analysis of double diffusive electrokinetic thermally radiated TiO2-Ag/blood stream triggered by synthetic cilia under buoyancy forces and activation energy. Phys. Scr. 96, 095218 (2021).
5. Reddy, S. R. R., Basha, H. T. & Duraisamy, P. Entropy generation for peristaltic flow of gold-blood nanofluid driven by electrokinetic force in a microchannel. Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjs/s11734-021-00379-4 (2022).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献