Utilization of Metallurgical Slags in Cu-free Friction Material Formulations

Author:

Matějka VlastimilORCID,Jayashree PriyadarshiniORCID,Leonardi MaraORCID,Vlček Jozef,Sabovčík Tomáš,Straffelini GiovanniORCID

Abstract

The aim of our research was to indicate the suitability of metallurgical slags (two blast furnace slags and one steel furnace slag) as the components of Cu-free friction materials. The base mixture consisted of nine components including phenolic resin, graphite, tin sulphide, steel and aramid fibers, iron powder, a mixture of barite with calcite, and vermiculite. To this base mixture, the slags with a particle size below 0.1 mm were added individually in the amount of 20 wt.%. A base friction mixture with alumina in the amount of 20 wt.% represented the reference. Samples for the friction-wear tests were produced in the form of pins by hot press molding. The prepared pins were tested using a pin-on-disc tester in a drag mode at the pressure of 1 MPa and a constant sliding speed of 1.51 m/s for 90 min. The samples with slags exhibited slightly lower values of steady-state friction coefficient compared to the reference composite with alumina, and at the same time produced lower wear particle emissions. The particle concentration was reduced for the samples with slowly cooled blast furnace and steel furnace slag. The results obtained indicated steel furnace slag as a promising component of Cu-free friction composites.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3