Tribological Behavior of Friction Materials Containing Aluminum Anodizing Waste Obtained by Different Industrial Drying Processes

Author:

Straffelini Giovanni1ORCID,Jayashree Priyadarshini1ORCID,Barbieri Andrea2,Masciocchi Roberto2

Affiliation:

1. Department of Industrial Engineering, University of Trento, Via Sommarive, 9, 38123 Trento, Trentino, Italy

2. Ossicolor SRL, Localita’ Fontanelle, 126, 38010 Spormaggiore, Trentino, Italy

Abstract

With sustainability dominating the industry, recycling the generated waste from different processes is becoming increasingly important. This study focuses on recycling waste generated during aluminum anodizing waste (AAW) in friction material formulations for automotive braking applications. However, before utilization, the waste needs to be pre-treated, which mainly involves drying. Hence, four different industrial drying methods were studied to dry the AAW, and the corresponding characteristics were observed by evaluating its residual humidity and crushability index. The waste powders were further characterized using FT-IR and SEM/EDXS to understand their constituents. The initial analysis showed that the waste subjected to the drying process P2 and P1 with the lowest final humidity fetched the most desirable results, with P1 having the simpler drying procedure. The AAW powders were added in a commercial friction material formulation at 6 and 12 wt.% and subjected to friction, wear, and non-exhaust particulate matter analysis. The worn surfaces were analyzed using SEM/EDXS evaluation to understand the extension and composition of the deposited secondary contact plateaus. It was seen that the 12 wt.% addition of waste processed using the P1 technique provided the most satisfactory friction, wear, and emission characteristics, along with expansive secondary contact plateaus with a good contribution of the waste in its formation. This study showed a good relationship between the processing method and a formulation’s tribological and emission characteristics, thereby paving the way for using this drying method for other waste requiring pre-treatment.

Funder

Provincial Law n°6/1999 (Autonomous Province of Trento, Italy),

Publisher

MDPI AG

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3