Optimization of Bioconvective Magnetized Walter’s B Nanofluid Flow towards a Cylindrical Disk with Artificial Neural Networks

Author:

Shafiq AnumORCID,Çolak Andaç BaturORCID,Sindhu Tabassum Naz

Abstract

Nanotechnology is a fundamental component of modern technology. Researchers have concentrated their efforts in recent years on inventing various algorithms to increase heat transmission rates. Using nanoparticles in host fluids to dramatically improve the thermal properties of ordinary fluids is one way to address this problem. The article deals with the bio-convective Walter’s B nanofluid with thermophoresis and Brownian diffusion through a cylindrical disk under artificial neural networks (ANNs). In addition, the thermal conductivity, radiation, and motile density of microorganisms are taken into consideration. The Buongiorno model is utilized to investigate the properties of nanofluids in motile microorganisms. By using appropriate similarity variables, a dimensionless system of a differential system is attained. The non-linear simplified system of equations has been numerically calculated via the Runge–Kutta fourth-order shooting process. The consequences of flow parameters on the velocity field, temperature distribution, species volumetric concentration, and microorganism fields are all addressed. Two distinct artificial neural network models were produced using numerical data, and their prediction performance was thoroughly examined. It is noted that according to the error histograms, the ANN model’s training phase has very little error. Furthermore, mean square error values calculated for local Nusselt number, local Sherwood number, and local motile density number, parameters were obtained as 3.58×10−3, 1.24×10−3, and 3.55×10−5, respectively. Both artificial neural network models can predict with high accuracy, according to the findings of the calculated performance parameters.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3