Analysis of the Turbulent Lubrication of a Textured Hydrodynamic Journal Bearing

Author:

Mao Yazhou1,Li Lilin1,Li Daqing1,Zheng Jingyang2ORCID

Affiliation:

1. School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, China

2. College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471003, China

Abstract

In order to investigate the turbulent lubrication performance of a textured hydrodynamic journal bearing (THJB), a model of turbulent lubrication was established in this paper. The variations in the Reynolds number, oil film thickness, oil film pressure, bearing capacity, attitude angle, and side leakage flow with structural and working parameters were studied, and the axis whirl orbit was further analyzed. The results show that turbulent lubrication is suitable for the actual operating conditions of THJBs. The Reynolds number decreases with the eccentricity ratio in the pressure-bearing zone but increases with rotational speeds, whereas the variation in the maximum oil film pressure increases and the minimum oil film thickness decreases with the eccentricity ratio under various Reynolds numbers. The bearing capacity decreases with the dimple diameter, depth, oil film thickness, and clearance ratio but increases with the length/diameter ratio and dimple spacing. As the eccentricity ratio increases, the attitude angle decreases, but the side leakage flow increases. In addition, the system tends to be unstable as the rotational speed and length/diameter ratio increase, and the friction and wear on the surface are three-body friction. This work not only helps in analyzing the characteristics of a THJB under actual operating conditions but also provides support for research on the simulation of THJB’s lubrication mechanism of THJB via computational fluid dynamics.

Funder

Young Elite Scientists Sponsorship Program

Henan Provincial Department of Science and Technology Research

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3