Micro-Pitting and Wear Assessment of PAO vs Mineral-Based Engine Oil Operating under Mixed Lubrication Conditions: Effects of Lambda, Roughness Lay and Sliding Direction

Author:

Vrček Aleks,Hultqvist Tobias,Baubet Yannick,Björling MarcusORCID,Marklund PärORCID,Larsson Roland

Abstract

Under certain operating conditions, rolling contacts have been shown to experience some challenges when lubricated with engine oils containing zinc dialkyldithophosphate (ZDDP) anti-wear additive. In order to better understand the main damage mechanisms during various operating conditions, further studies are needed. This article studies micro-pitting and wear damages of bearing steel surfaces under mixed lubrication conditions in a ball-on-disc setup, lubricated with different engine oils. Based on the results, micro-pitting and wear damage is shown to be highly case-dependent. In general, PAO-based engine oil tends to eliminate micro-pitting damage compared to mineral-based engine oil at less severe lubricating conditions. Moreover, a critical lambda was found for both oils, where the highest micro-pitting damage was observed.

Funder

Energimyndigheten

FP7 People: Marie-Curie Actions

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3