The Influence of Scratches on the Tribological Performance of Friction Pairs Made of Different Materials under Water-Lubrication Conditions

Author:

Liang Qingchen12,Liang Peng12ORCID,Guo Feng12ORCID,Li Shuyi1,Zhang Xiaohan1,Jiang Fulin1

Affiliation:

1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

2. Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Qingdao University of Technology, Ministry of Education, Qingdao 266520, China

Abstract

Water-lubricated bearings are widely used in marine equipment, and the lubricating water often contains hard particles. Once these particles enter the gap between the bearing and the shaft, they can scratch the smooth surfaces of the shaft and bearing, influencing the working performance of the bearing system. To investigate the effect of scratch parameters on tribological performance, this paper conducts multiple block-on-ring experiments and constructs a mixed-lubrication model under water-lubrication conditions. The results show that among the three commonly used bearing materials, the tribological performance of graphite block is the most sensitive to scratches on the test ring surface. Under the condition of one scratch (N = 1), the loading area of water film pressure is divided into two separate zones (a trapezoidal pressure zone and an extremely low-pressure zone). In addition, the variation of maximum water film pressure is determined by the positive effect (hydrodynamic pressure effect of fluid) and negative effect (“piercing effect” of the asperities). Compared with the scratch depth and scratch location, the scratch width has the most significant effect on the tribological performance of the block-on-ring system. The maximum contact pressure is located at both edges of the scratch due to the formation of a water sac structure. The scratch has a great influence on the transition of the lubrication state of the block-on-ring system. The existence of scratches increases the critical speed at which the lubrication state transits from mixed-lubrication to elastohydrodynamic lubrication, and the critical speed is directly proportional to the scratch width.

Funder

National Natural Science Foundation of China

Youth Innovation Technology-support Program of Shandong Province Universities and Colleges

Shandong Provincial Natural Science Foundation

Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3