Using Standstill Time to Evaluate the Startup in Polymer Pair Systems

Author:

Ptak Anita1ORCID,Łuksza Zuzanna1

Affiliation:

1. Department of Fundamentals of Machine Design and Mechatronic Systems, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, ul. I. Lukasiewicza 5, 50-371 Wroclaw, Poland

Abstract

The subject of polymer–polymer pair interaction is highly important, bearing in mind that such pairs are used in the construction of machines and equipment, among other uses. Considering that the characteristics of polymer–polymer sliding pairs (e.g., the load limit value and advantageous parameter, PV) differ from those of polymer–metal pairs, the subject is particularly interesting and has been little explored so far. Hence, the present study presents one of the areas of the effects of standstill time (intrinsically characteristic of polymeric materials) on the startup parameters in sliding pairs where the sample and the countersample were made of a polymeric material. Pairs of same-type polymers, POM–POM, PET–PET, and PA6–PA6, were subjected to tests. A test rig dedicated to static friction coefficient determination, whose principle of operation is based on the interdependences between the force characteristics of an inclined plane, was used for this purpose. The sliding pair was successively loaded with 25 N, 50 N, and 75 N, and the standstill time ranged from 0 to 10 min. The determined tribological characteristics were analysed with regard to the standstill time under load, unit pressure, and polymer pair material. An optical profilometer and a scanning electron microscope were used to qualitatively evaluate the effects of standstill time and unit pressure on the surfaces of the interacting elements. Complex interrelationships between the test results and the set experimental parameters were noted. SEM micrographs revealed post-friction changes in the sliding surfaces.

Funder

pro-quality subsidy for the development of research potential of the Faculty of Mechanical Engineering

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3