Method for On-Line Remaining Useful Life and Wear Prediction for Adjustable Journal Bearings Utilizing a Combination of Physics-Based and Data-Driven Models: A Numerical Investigation

Author:

Shutin DenisORCID,Bondarenko Maxim,Polyakov Roman,Stebakov Ivan,Savin Leonid

Abstract

RUL (remaining useful life) estimation is one of the main functions of the predictive analytics systems for rotary machines. Data-driven models based on large amounts of multisensory measurements data are usually utilized for this purpose. The use of adjustable bearings, on the one hand, improves a machine’s performance. On the other hand, it requires considering the additional variability in the bearing parameters in order to obtain adequate RUL estimates. The present study proposes a hybrid approach to such prediction models involving the joint use of physics-based models of adjustable bearings and data-driven models for fast on-line prediction of their parameters. The approach provides a rather simple way of considering the variability of the properties caused by the control systems. It has been tested on highly loaded locomotive traction motor axle bearings for consideration and prediction of their wear and RUL. The proposed adjustable design of the bearings includes temperature control, resulting in an increase in their expected service life. The initial study of the system was implemented with a physics-based model using Archard’s law and Reynolds equation and considering load and thermal factors for wear rate calculation. The dataset generated by this model is used to train an ANN for high-speed on-line bearing RUL and wear prediction. The results show good qualitative and quantitative agreement with the statistics of operation of traction motor axle bearings. A number of recommendations for further improving the quality of predicting the parameters of active bearings are also made as a summary of the work.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3