Supervised Health Stage Prediction Using Convolutional Neural Networks for Bearing Wear

Author:

Suh SunghoORCID,Jang Joel,Won Seungjae,Jha Mayank ShekharORCID,Lee Yong Oh

Abstract

Early detection of faults in rotating machinery systems is crucial in preventing system failure, increasing safety, and reducing maintenance costs. Current methods of fault detection suffer from the lack of efficient feature extraction method, the need for designating a threshold producing minimal false alarm rates, and the need for expert domain knowledge, which is costly. In this paper, we propose a novel data-driven health division method based on convolutional neural networks using a graphical representation of time series data, called a nested scatter plot. The proposed method trains the model with a small amount of labeled data and does not require a threshold value to predict the health state of rotary machines. Notwithstanding the lack of datasets that show the ground truth of health stages, our experiments with two open datasets of run-to-failure bearing demonstrated that our method is able to detect the early symptoms of bearing wear earlier and more efficiently than other threshold-based health indicator methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. Dynamic modeling of gearbox faults: A review

2. Machinery health prognostics: A systematic review from data acquisition to RUL prediction

3. Prognostics and health management for maintenance practitioners-Review, implementation and tools evaluation;Atamuradov;Int. J. Progn. Health Manag.,2017

4. A model to predict the residual life of rolling element bearings given monitored condition information to date

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3