Abstract
The objective of the present investigation is to analyze the tribological performance between the union of the cylinder liner and the compression ring under the influence of surface texturing and different lubrication boundary conditions. The analysis is carried out by developing a numerical model, which involves hydrodynamic pressure, lubrication film thickness, textured surface, dynamic forces, and lubrication boundary conditions (starved lubrication and fully flooded lubrication). MATLAB® software (The MathWorks Inc., Natick, MA, USA) is used to solve the equations developed. The results show that the application of a textured surface on the cylinder liner allows obtaining a reduction of 20% and 5% in the asperity contact force and in the total friction force. Additionally, the textured surface allows for a 4% increase in MOFT. In this way, it is possible to reduce the power loss. The implementation of a boundary condition of fully flooded lubrication produces an overestimation in the total friction force due to the greater prominence of the lubrication film. Implementing a textured surface in the ring profile is an alternative way to reduce power loss. The results show that this alternative allows an 8% reduction in power loss.
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献