ZDDP Tribofilm Formation from a Formulated Oil on Textured Cylinder Liners

Author:

Dias Leonardo C.,Pintaude GiuseppeORCID,Vittorino Alessandro A. O. F.,Costa Henara L.ORCID

Abstract

Surface texturing can improve lubrication and entrap wear debris but increases the effective roughness of the surfaces, which can induce higher contact pressures. On the one hand, this can be detrimental, but on the other hand, the increase in contact pressure could be used to activate the formation of a ZDDP tribofilm from fully-formulated lubricants. This work investigates the synergistic effect between surface texturing via Maskless Electrochemical Texturing (MECT) and ZDDP additive. The surface texture consisted of an array of annular pockets manufactured on a gray cast iron cylinder liner. These textured surfaces were evaluated by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that surface texturing via MECT changes the chemical composition of the surfaces, by inducing a preferential dissolution of the metal matrix. Consequently, it exposed the carbon present in the material. The tribological performance was evaluated by a ring-on-cylinder-liner tribometer in reciprocating sliding under boundary lubrication conditions using both a base oil and a commercial formulated oil containing ZDDP additive. For comparison, a commercially honed liner was also tested. After the tribological tests, the surfaces were evaluated by white light interferometry and SEM/EDX. Although the textured surfaces showed higher friction, they induced more ZDDP-tribofilm formation than conventional cylinder liner finish.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3