Pressure-Assisted Lubrication of DC01 Steel Sheets to Reduce Friction in Sheet-Metal-Forming Processes

Author:

Trzepieciński Tomasz1ORCID,Szwajka Krzysztof2ORCID,Szewczyk Marek2

Affiliation:

1. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland

2. Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

Abstract

Friction in sheet-metal-forming processes not only affects the values of the force parameters of the process but also determines the quality of the surface of the drawpieces. This paper presents an approach to reducing the coefficient of friction by directly applying pressurized oil to the contact zone. For this purpose, a special test stand was built to carry out the strip draw test, commonly used to model the phenomenon of friction in the deep-drawing process. This test consisted of pulling a strip between flat countersamples made of 145Cr6 cold-work tool steel covered with an abrasion-resistant Mtec (AlTiN) coating. During the pilot tests, various contact pressures, lubricants with different viscosities, and different lubricant pressures were used. The influence of friction conditions on the surface roughness of the samples and the relationship between the friction conditions and the value of the coefficient of friction were determined. The supply of the lubricant under pressure into the contact zone has a beneficial effect on reducing friction. The coefficient of friction decreases with increasing lubricant pressure for contact pressures of 2–6 MPa. For a contact pressure of 8 MPa, the lubricant pressure is the least favorable for reducing the coefficient of friction. At higher lubricant pressures (12 and 18 bar), the lubrication efficiency depends on the viscosity of the lubricant and decreases with increasing contact pressure.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3