Effects of Combined Nitrogen Deficient and Mixotrophic (+Glucose) Culture on the Lipid Accumulation of Parachlorella Kessleri TY

Author:

Gao YifanORCID,Ji Li,Feng Jia,Lv Junping,Xie ShulianORCID

Abstract

The combustion explosion of ordinary diesel is a global environmental problem. Green microalgae, which do not cause eutrophication, are a raw material that can be used to clean biodiesel. To increase lipid productivity, this study used a nitrogen deficient & mixotrophic (+Glucose) culture of lipid-producing microalgae Parachlorella kessleri TY from Shanxi Province, China. To examine the growth of P. kessleri TY, we measured dry weight, chlorophyll content, and chlorophyll fluorescence intensity under different culture conditions, in addition to the contents of neutral lipids, total lipids, and fatty acids, to examine its lipid accumulation ability. Cells were cultured in autotrophic, nitrogen deficient, mixotrophic (+Glucose), and nitrogen deficient & mixotrophic (+Glucose) conditions for 7 days. We found the growth of P. kessleri TY under nitrogen deficient & mixotrophic conditions was higher than that under the autotrophic and nitrogen deficient conditions, but lower than that under the mixotrophic (+Glucose) conditions. However, its lipid accumulation ability was significantly higher than that of control cultures. In conclusion, P. kessleri TY cultured under nitrogen-deficient and mixotrophic (+Glucose) conditions has significant lipid production capacity. Our results provide a theoretical basis for the use of microalgae as a raw material in the production of biodiesel, and promote the application of P. kessleri TY in large-scale production.

Funder

National Natural Science Foundation of China

the Research Award Fund for Outstanding Doctoral Coming to Work in Shanxi

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3