Early Experience Analyzing Dietary Intake Data from the Canadian Community Health Survey—Nutrition Using the National Cancer Institute (NCI) Method

Author:

Davis Karelyn A.,Gonzalez Alejandro,Loukine Lidia,Qiao Cunye,Sadeghpour Alireza,Vigneault Michel,Wang Kuan Chiao,Ibañez DominiqueORCID

Abstract

Background: One of the underpinning elements to support evidence-based decision-making in food and nutrition is the usual dietary intake of a population. It represents the long-run average consumption of a particular dietary component (i.e., food or nutrient). Variations in individual eating habits are observed from day-to-day and between individuals. The National Cancer Institute (NCI) method uses statistical modeling to account for these variations in estimation of usual intakes. This method was originally developed for nutrition survey data in the United States. The main objective of this study was to apply the NCI method in the analysis of Canadian nutrition surveys. Methods: Data from two surveys, the 2004 and 2015 Canadian Community Health Survey—Nutrition were used to estimate usual dietary intake distributions from food sources using the NCI method. The effect of different statistical considerations such as choice of the model, covariates, stratification compared to pooling, and exclusion of outliers were assessed, along with the computational time to convergence. Results: A flowchart to aid in model selection was developed. Different covariates (e.g., age/sex groups, cycle, weekday/weekend of the recall) were used to adjust the estimates of usual intakes. Moreover, larger differences in the ratio of within to between variation for a stratified analysis or a pooled analysis resulted in noticeable differences, particularly in the tails of the distribution of usual intake estimates. Outliers were subsequently removed when the ratio was larger than 10. For an individual age/sex group, the NCI method took 1 h–5 h to obtain results depending on the dietary component. Conclusion: Early experience in using the NCI method with Canadian nutrition surveys data led to the development of a flowchart to facilitate the choice of the NCI model to use. The ability of the NCI method to include covariates permits comparisons between both 2004 and 2015. This study shows that the improper application of pooling and stratification as well as the outlier detection can lead to biased results. This early experience can provide guidance to other researchers and ensures consistency in the analysis of usual dietary intake in the Canadian context.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3