Room-Temperature Self-Healing Conductive Elastomers for Modular Assembly as a Microfluidic Electrochemical Biosensing Platform for the Detection of Colorectal Cancer Exosomes

Author:

Wang Mei1,Zhang Zilin1,Li Guangda1,Jing Aihua1

Affiliation:

1. College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China

Abstract

Modular components for rapid assembly of microfluidics must put extra effort into solving leakage and alignment problems between individual modules. Here, we demonstrate a conductive elastomer with self-healing properties and propose a modular microfluidic component configuration system that utilizes self-healing without needing external interfaces as an alternative to the traditional chip form. Specifically, dual dynamic covalent bond crosslinks (imine and borate ester bonds) established between Polyurethane (PU) and 2-Formylbenzeneboronic acid (2-FPBA) are the key to a hard room-temperature self-healing elastomeric substrate PP (PU/2-FPBA). An MG (MXene/GO) conductive network with stable layer spacing (Al-O bonds) obtained from MXene and graphene oxide (GO) by in situ reduction of metals confers photothermal conductivity to PP. One-step liquid molding obtained a standardized modular component library of puzzle shapes from PP and MGPP (MG/PP). The exosomes were used to validate the performance of the constructed microfluidic electrochemical biosensing platform. The device has a wide detection range (50–105 particles/μL) and a low limit of detection (LOD) (42 particles/μL) (S/N = 3), providing a disposable, reusable, cost-effective, and rapid analysis platform for quantitative detection of colorectal cancer exosomes. In addition, to our knowledge, this is the first exploration of self-healing conductive elastomers for a modular microfluidic electrochemical biosensing platform.

Funder

National Natural Science Foundation of China

Henan Excellent Youth Science Foundation project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3