Anti‐Fouling Polymer or Peptide‐Modified Electrochemical Biosensors for Improved Biosensing in Complex Media

Author:

Saxena Survanshu1,Sen Payel2,Soleymani Leyla123,Hoare Todd14ORCID

Affiliation:

1. School of Biomedical Engineering McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada

2. Department of Engineering Physics McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada

3. Michael G. DeGroote Institute for Infectious Disease Research McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L8 Canada

4. Department of Chemical Engineering McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada

Abstract

AbstractElectrochemical biosensing represents a highly effective technology for detecting disease biomarkers given its high sensitivity, low and clinically relevant limit of detection, and cost effectiveness. However, in complex media such as urine, blood, sweat or saliva, biosensing performance can be significantly impacted by electrode biofouling by proteins, cells, lipids, and other matrix components. Such biofouling leads to reduced signal from the target analyte coupled with an elevated background signal, resulting in poor signal‐to‐noise ratios (SNRs), reduced sensitivity, and lower specificity. This comprehensive review describes the design of anti‐fouling polymers and peptides as a potential solution to prevent or suppress electrochemical biosensor fouling. Various anti‐fouling polymers and peptides developed for improved biosensing in complex media are summarized in the context of their mechanism(s) of anti‐fouling, methods of deposition, and practical applications. Recent advances and persistent challenges in the field are also reviewed to provide perspectives on new directions toward enhancing anti‐fouling in electrochemical biosensors.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3