Amyotrophic Lateral Sclerosis Pathoetiology and Pathophysiology: Roles of Astrocytes, Gut Microbiome, and Muscle Interactions via the Mitochondrial Melatonergic Pathway, with Disruption by Glyphosate-Based Herbicides

Author:

Anderson GeorgeORCID

Abstract

The pathoetiology and pathophysiology of motor neuron loss in amyotrophic lateral sclerosis (ALS) are still to be determined, with only a small percentage of ALS patients having a known genetic risk factor. The article looks to integrate wider bodies of data on the biological underpinnings of ALS, highlighting the integrative role of alterations in the mitochondrial melatonergic pathways and systemic factors regulating this pathway across a number of crucial hubs in ALS pathophysiology, namely glia, gut, and the muscle/neuromuscular junction. It is proposed that suppression of the mitochondrial melatonergic pathway underpins changes in muscle brain-derived neurotrophic factor, and its melatonergic pathway mimic, N-acetylserotonin, leading to a lack of metabolic trophic support at the neuromuscular junction. The attenuation of the melatonergic pathway in astrocytes prevents activation of toll-like receptor agonists-induced pro-inflammatory transcription factors, NF-kB, and yin yang 1, from having a built-in limitation on inflammatory induction that arises from their synchronized induction of melatonin release. Such maintained astrocyte activation, coupled with heightened microglia reactivity, is an important driver of motor neuron susceptibility in ALS. Two important systemic factors, gut dysbiosis/permeability and pineal melatonin mediate many of their beneficial effects via their capacity to upregulate the mitochondrial melatonergic pathway in central and systemic cells. The mitochondrial melatonergic pathway may be seen as a core aspect of cellular function, with its suppression increasing reactive oxygen species (ROS), leading to ROS-induced microRNAs, thereby altering the patterning of genes induced. It is proposed that the increased occupational risk of ALS in farmers, gardeners, and sportsmen and women is intimately linked to exposure, whilst being physically active, to the widely used glyphosate-based herbicides. This has numerous research and treatment implications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3