Gut Microbiome and Circadian Interactions with Platelets Across Human Diseases, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Cancer

Author:

Anderson George1ORCID

Affiliation:

1. Department of Research, CRC Scotland & London, Eccleston Square, London, SW1V 1PG, UK

Abstract

Abstract: Platelets have traditionally been investigated for their role in clot formation in the course of cardiovascular diseases and strokes. However, recent work indicates platelets to be an integral aspect of wider systemic processes, with relevance to the pathophysiology of a host of diverse medical conditions, including neurodegenerative disorders and cancer. This article reviews platelet function and interactions with the gut microbiome and circadian systems, highlighting the role of the platelet mitochondrial melatonergic pathway in determining platelet activation, fluxes and plasticity. This provides a number of novel conceptualizations of platelet function and mode of interaction with other cell types, including in the pathoetiology and pathophysiology of diverse medical conditions, such as cancer, Alzheimer’s disease, and amyotrophic lateral sclerosis. It is proposed that a platelet-gut axis allows platelets to contribute to many of the pathophysiological processes linked to gut dysbiosis and gut permeability. This is at least partly via platelet sphingosine- 1-phosphate release, which regulates enteric glial cells and lymphocyte chemotaxis, indicating an etiological role for platelets in a wide array of medical conditions linked to alterations in the gut microbiome. Platelets are also an important regulator of the various microenvironments that underpin most human medical conditions, including the tumor microenvironment, neurodegenerative diseases, and autoimmune disorders. Platelet serotonin release regulates the availability of the mitochondrial melatonergic pathway systemically, thereby being an important determinant of the dynamic metabolic interactions occurring across cell types that underpin the pathoetiology of many medical conditions. In addition, a number of novel and diverse future research directions and treatment implications are proposed.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3