Author:
Jin Tingwei,Xing Xiwen,Xie Yubing,Sun Yan,Bian Sijia,Liu Liying,Chen Guang,Wang Xinzhe,Yu Xiaoxiao,Su Yingjie
Abstract
Quinoa straw is rich in hemicellulose, and it could be hydrolyzed into xylose. It is a promising energy resource alternative that acts as a potential low-cost material for producing xylitol. In this study, quinoa straw was used as a substrate subjected to the hydrolysis of dilute sulfuric acid solution. Based on the production of xylose and inhibitors during hydrolysis, the optimal conditions for the hydrolysis of hemicellulose in quinoa straw were determined. Detoxification was performed via activated carbon adsorption. The optimal detoxification conditions were determined on the basis of major inhibitor concentrations in the hydrolysate. When the addition of activated carbon was 3% at 30 °C for 40 min, the removal of formic acid, acetic acid, furfural, and 5-HMF could reach 66.52%, 64.54%, 88.31%, and 89.44%, respectively. In addition to activated carbon adsorption, vacuum evaporation was further conducted to perform two-step detoxification. Subsequently, the detoxified hydrolysate was used for xylitol fermentation. The yield of xylitol reached 0.50 g/g after 96 h of fermentation by Candida tropicalis (CICC 1779). It is 1.2-fold higher than that obtained through the sole vacuum evaporation method. This study validated the feasibility of xylitol production from quinoa straw via a biorefinery process.
Funder
Natural Science Foundation of Jilin Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献