Enhanced Production of Clean Fermentable Sugars by Acid Pretreatment and Enzymatic Saccharification of Sugarcane Bagasse

Author:

Yaverino-Gutierrez Mario Alberto1,Ramos Lucas1ORCID,Ascencio Jesús Jiménez1,Chandel Anuj Kumar1ORCID

Affiliation:

1. Renewable Carbon and Biology Systems Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, Brazil

Abstract

Sugarcane bagasse (SCB), an agro-industrial byproduct generated by a sugar mill, holds a substantial carbohydrate content of around 70 wt.%, comprising cellulose and hemicellulose. Saccharification plays a pivotal role in the conversion of SCB into second-generation (2G)-ethanol and valuable compounds, which is significantly aided by thermochemical pretreatments. In this study, SCB underwent diluted sulfuric acid pretreatment (2% H2SO4, 80 rpm, 200 °C, 20 min), resulting in the removal of 77.3% of the xylan. The hemicellulosic hydrolysate was analyzed to identify the sugars and degraded products acting as microbial inhibitors. The acid hydrolysate showed a xylose yield of 68.0% (16.4 g/L) and a yield of 3.8 g/L of acetic acid. Afterward, the hemicellulosic hydrolysate was concentrated 2.37 times to obtain a xylose-rich stream (39.87 g/L). The sequential detoxification, employing calcium oxide and activated carbon, removed the inhibitory compounds, including acetic acid, while preserving the xylose at 38.10 g/L. The enzymatic saccharification of cellulignin at 5% and 10% of the total solids (TSs) yielded comparable reducing sugar (RS) yields of 47.3% (15.2 g/L) and 47.4% (30.4 g/L), respectively, after 96 h, employing a 10 FPU/g enzyme loading of Cellic® CTec3 (Novozymes Inc. Parana, Brazil). In summary, these findings outline an integrated green chemistry approach aimed at addressing the key challenges associated with pretreatment, concentration, detoxification, and enzymatic hydrolysis to produce fermentable sugars.

Funder

São Paulo Research Foundation

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) productivity program

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3